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Wormlike micelles under shear flow: A microscopic model
studied by nonequilibrium-molecular-dynamics computer simulations
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We propose a microscopic model for solutions of wormlike micelles and report results from
nonequilibrium-molecular-dynamics computer simulations under shear flow. Our model (“FENE-C”)
introduces the concept of scission-recombination and is an extension of a recent model employed by one
of us [M. Krdger, Rheologie und Struktur von Polymerschmelzen (Wissenschaft and Technik, Berlin,
1995); Rheology 5, 66 (1995)] for polymer melts. In this study our interest is focused on the relevance of
the microscopic model by comparing the results of the simulations with the predictions of mesoscopic
theories. The simulated behavior shows an exponential distribution for the micellar length and an ex-
ponential dependence of the average length on the scission energy at equilibrium. These results corre-
spond to those calculated from Cates mesoscopic theory. Results of simulations concerning the effect of
shear flow on the size distribution and on the average length of the micelles are also reported and dis-

cussed.

PACS number(s): 61.25.Hq, 83.50.Ax, 61.20.Gy, 61.20.Ja

I. INTRODUCTION

Aqueous surfactant solutions are known to form
elongated micelles under certain thermodynamic condi-
tions characterized by surfactant concentration, salinity,
or temperature [1,2]. In the semidilute regime these
linear and flexible particles, with persistence lengths
varying from 15 to 150 nm [3], form an elongated visco-
elastic network. In equilibrium their behavior is analo-
gous to that of polymer solutions and their properties
obey the scaling laws predicted for the semidilute range
[4]. This analogy is now well understood. In contradis-
tinction to ordinary polymers, these wormlike micelles
can break and recombine within a characteristic time
(breaking time) and their micellar length obeys an ex-
ponential distribution [5].

As a consequence of this scission-recombination pro-
cess and polydispersity, the flow properties of these living
polymers show characteristic behaviors, often different
from those of classical polymers. Recently observed phe-
nomena such as shear banding structure, shear inducing
structure, phase transitions, and thixotropy [6—9] are not
completely understood; for example, the data are inter-
preted without taking into account the possible effect of
flow on the size of the micelles or on their polydispersity
(distribution of lengths [10,11]).

This effect has been considered theoretically by Wang,
Gebart, and Ben-Shaul [12] for dilute solutions of rodlike
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micelles. Their model predicts a reduction of the micel-
lar size under extensional flow. In a later work on rodlike
micelles Wang [13] found that under shear flow, above a
certain critical shear rate, a gel-like molecular structure
appears. Recently, the same author, using a
nonequilibrium-statistical-mechanic approach, has re-
ported that rodlike micelles grow at high shear rates [14].
This result is, however, different from that reported ex-
perimentally by Rehage, Wunderlich, and Hoffmann [15].

Until now there exists no general theory of these flow
effects and the understanding of these phenomena is still
incomplete [16—19]. The aim of this work is to introduce
an approach to study the flow properties of micellar sys-
tems. We propose a microscopic model for wormlike mi-
celles, which we study by nonequilibrium-molecular-
dynamics (NEMD) computer simulations. The aim of us-
ing such a powerful tool is to help to understand the mi-
croscopic origin of flow phenomena in micellar systems.

Our model (“FENE-C”) introduces the concept of scis-
sion recombination of the micelles and it is an extension
of a model established recently for polymers in equilibri-
um [20] and under flow [21,22]. Preliminary simulations
results on polymer melts under shear flow were published
by Hess [23].

In this study on systems of flexible micelles our interest
is focused on the relevance of the microscopic model by
comparing the equilibrium properties of the simulations
(distribution of length and mean length) with those calcu-
lated from mesoscopic theories. Moreover, the effect of
shear flow on these quantities is analyzed.

This article proceeds as follows. In Sec. II the main
predictions on the equilibrium properties as predicted by
the mesoscopic theory are briefly recalled. In Sec. III the
microscopic FENE-C model is presented. In Secs. IV

2531 ©1996 The American Physical Society



2532

and V the results of the simulations will be reported and
discussed.

II. EQUILIBRIUM PROPERTIES
FROM THE MESOSCOPIC THEORY

From a mean-field (Flory-Huggins) approach Cates [5]
has calculated the equilibrium properties of reversibly
breaking aggregates such as micelles. He found that the
normalized number density C (L) of micelles of length L
(L is equal to the number of monomers units in a chain)
is given by an exponential function

C(L)x exp

) (1

with a mean length L given by

L=¢exp | 5,7

) (2)

where ¢ represents the total volume fraction, and E the
scission energy, which is the energy required to create
two chain ends (or to break a chain into two parts), and T
denotes the absolute temperature.

In this model, it is assumed that a chain can break (and
recombine) with a fixed probability per unit time per unit
length anywhere along its length. Successive breakage
and recombination events are not correlated. This rever-
sible unimolecular process is characterized by a rate con-
stant k; and by a micellar breaking time 7, (time separat-
ing two successive scissions) related to the mean length L
by

1

Ty — — .
* kL

(3)

III. THE MICROSCOPIC FENE-C MODEL

A. Nonequilibrium molecular dynamics

Newton’s equations of a (classical) many-particle prob-
lem under external forces can be solved iteratively by
NEMD computer simulations. For the case studied here,
the external forces build up a macroscopic velocity gra-
dient (with shear rate as parameter) in the fluid. During
the simulation the extraction of physical quantities is per-
formed by following the concepts of statistical physics.
The quantities of both macroscopic and microscopic in-
terest are expressed in terms of the configurational quan-
tities such as the space coordinates or velocities of all (in-
teracting) particles. Therefore the NEMD method serves
as an instrument to investigate the molecular sources of
macroscopically measurable transport phenomena [26].
To perform simulations of physical relevance they have
to be based on simple models. It is a permanent element
of progress to check the relevance by comparison with
experimental results [12,27,28].

B. Microscopic model for wormlike micellar solutions

The micellar solution of concentration ¢ is modeled by
N, monomers (particles), which interact via two-body po-
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the model

FIG. 1. Model potentials specifying the microscopic model
of wormlike micelles. All particles interact via the truncated
(repulsive) Lennard-Jones potential. The FENE-C potential
produces the bonding interactions.

tentials (Fig. 1). Let §N, be the number of particles that
are able to form wormlike chains of monomers ( “M par-
ticles”) and (1 —¢)N, the number of solvent particles (‘S
particles”). All particles of the system (M and S) have
the same mass and interact via the purely repulsive part
of the Lennard-Jones (LJ) potential [29]

4e[(r)" 2= (r}) 7O+ 1] for rf <re, =2'°

Ly—
Ui=lo for rE > Fo, @

with 7} =r; /o being the dimensionless distance between
particles i and j. In the following all quantities resulting
from the simulations are reduced to LJ units, which pro-
vides the energy (by €) and length scale (by o) of the sys-
tem; the monomeric mass gives the third unit. A quanti-
ty will be indexed by an asterisk, if otherwise ambiguities
can occur. For example, the reference quantities for den-
sity, temperature, time, and viscosity are

— -3 —
LY S Tref_E/kB’

_ (5)
ty=0Vme, N=0 *Vme.

All M particles are able to form transient bonds with all
other M particles except with those of the same chain,
but every M particle can have at maximum two bonds at
the same time. Within these conditions, which ensure
that only end-to-end recombinations and therefore no
branched structures can occur, all M particles interact
via the following, now called “FENE-C,” potential:

—0.5k*R3In[1—(r}/Ro)]
B for r; =min(R¢,R,)
Us™""= 1 —0.5k*R2 In[1— (R¢ /Ry *]

*
for rfZ R,

(6)

with parameters R, (maximum bond length), R (cutoff
radius), and k* (strength of spring). The corresponding
scission energy E_ is connected with the cutoff radius R¢
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via the difference between U"Y(r* — o0 ) and the energy
at the minimum of the bonding potential (see Fig. 1). The
original FENE potential for a “finitely extendable non-
linear elastic” spring is obtained from the FENE-C po-
tential by setting R =R,. The FENE potential was pro-
posed by Warner [30] and used by Ceperly, Kalos, and
Lebowitz [31] and Kremer and Grest [20] to study poly-
mer systems in equilibrium. See Fig. 2 for a schematic
representation of micellar configurations during possible
end-to-end recombination (or after a break). Resulting
from the model potentials, a break is favored for a bond
that is stretched because of thermal fluctuations, forces
due to the velocity gradient or local topological con-
straints (entanglements). In contrast, the possibility of a
subsequent recombination of two ends depends only on
the degree of fluctuation of ends, the temporary number
density of (open) ends and structural peculiarities, which
may favor an instantaneous recombination of broken
parts of a micelle. To be able to compare directly with
previous results on polymer melts, i.e., “classical poly-
mers” (R-=R,) with maximal concentration ¢=100%
as in [8,12], we have chosen R,=1.5 and k *=30 at con-
stant temperature T*=1 and particle density n*=0.84.
The strength of the spring is small enough to permit a
“large” integration time step of Az*=0.005. The non-
linearity of the FENE potential determines the quality
(ergodicity) of the simulation: the phase space is filled
better than for the case of an underlying Hookean force
law to connect particles within micelles. The results in
both cases will show different phenomenology too. Start-
ing from the (classical) Liouville equation, the time evolu-
tion of the trajectories of all monomers can be discre-
tized. By expanding the formal solution of that equation
to first order in At (the time step) one gets the ‘“leapfrog
algorithm” [32], from which the presently used ‘“velocity
Verlet algorithm” [33] is deduced. All (real) monomers
of the simulated system from which physical observables

L1 L2 L1+ L2
L3 + L4 L1+ Ld
g -
L1 + L2 L3 + L2
L1 Li+ L2 |
L2 + L3 L3

FIG. 2. Schematic representation of micellar configurations
during end-to-end recombination (or after a break). Resulting
from the model, a break is favored for a bond that is stretched
because of thermal fluctuations, forces due to the velocity gra-
dient, or local topological constraints (entanglements).
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are obtained are confined within a “central” cubic cell of
constant volume. That volume is, together with its parti-
cles, periodically reproduced in every direction of space.
Particles are allowed to cross the surface and to interact
through the surface of the central cell via the ‘“nearest
image convention” [33], which is always used when
studying bulk properties from molecular-dynamics simu-
lations. Hence a monomer cannot directly interact with
its own ‘“‘image particle” because the cutoff radii of the
chosen potentials are smaller than the simulated box
length. For the present simulations the volume of the
central cell ¥'/3~26>>max(R,2!®), where 2!/% is the
minimum of the LJ potential. The shear flow is imposed
by the homogeneous shear flow algorithm of Evans [34].
During the simulation the temperature is kept constant
by rescaling the peculiar velocities as described in [23].

The ideal FENE-C potential leads to a discontinuity in
acceleration of particles at the moment of recombining
and breaking. In view of our investigations with a set of
smoothing functions, defined on the interval
[Rc—AR,R-+AR] with AR <0.01, there is no need to
specify further the model potential by introducing more
parameters describing a smoothing of the potential in the
vicinity of the radius R.. We checked that all measured
macroscopic quantities are insensitive to the exact trajec-
tories within the corresponding time interval of one scis-
sion or one recombination process, respectively, resulting
from its small value compared with the breaking and re-
laxation times of chains. These results are not reported
here.

All simulated systems presented here consist of
N, =8400 monomers. Neighbor lists and layered link
cells [35] are used to optimize the computer routines. In
contrast to the equilibrium simulations the list of pair
dependences is updated based on an upper limit for the
increase of the relative separation of these pairs, not on
the absolute motion of individual particles. Starting from
equilibrated samples the typical times t* required to
reach a steady state varied from t*=10° for ¢=4% at
the highest shear rate ¥y =2 to t*=2X10* for ¢=100%
at the lowest shear rate y =10~ % As checked by the in-
verse experiment, the stress relaxation times after sudden
cessation of steady-state shear flow are smaller than the
chosen time intervals: e.g., the relaxation times ¢}, of
samples with ¢ =4% and 100% after cessation of shear
with ¥=0.01 are ¢},,, =250+50 and 2800+700, respec-
tively. The CPU time used per time step was 0.041 son a
CRAY Y-MP supercomputer for a system with 8400
beads.

IV. COMPUTER SIMULATIONS RESULTS

By varying the cutoff radius R of the intramolecular
FENE-C potential the results for simple fluids [24] and
polymer melts [21,25] can be reproduced in the limiting
cases of R-=0 and R-=R,, respectively. In order to
analyze living polymer systems consisting of “long”
chains, i.e., with L >10 and L <120 (which is a large
value in view of the chosen size of the central cell), we
chose R, =1.13 (compare with Fig. 3 and Table I) to pro-
duce most of the presented data.
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FIG. 3. Average micellar length L vs the scission energy for
micellar solutions (from 4% to 100%) in equilibrium.

A. Equilibrium properties

The simulation results on equilibrated sample
(At =2X 10%) properties are characterized by the distri-
butlon of length C(L) and the average micellar length L
against the scission energy E .. These curves are plotted
in Figs. 3 and 4. The exponential form of these two quan-
tities, which represents a large polydispersity of the living

TABLE 1. Relevant equilibrium properties for five samples,
S1-S4 (solutions) and S5 (polydisperse melt). For given con-
centration ¢, cutoff parameter R of the FENE-C potential and
the corresponding scission energy E., the breaking time for mi-
celles 7, (equal to the recombination time 7, in equilibrium),
and the average length of micelles L as well as the quantity k;
as defined by k! =L7,, all shown at different shear rates y.

Parameters
Samples S1 S2 S3 S4 S5

é 4% 49% 15% 50% 100%

R¢ 1.10 1.13 1.13 1.13 1.13

E,, 5.86 8.09 8.09 8.09 8.09

y=0

L 13 38 52 134 210

T 10.4 27.0 18.7 5.8 3.4

10%k, 9.8 1.07 1.16 1.21 1.39
v=0.01

L 12.4 31 45 110 182

T 8.5 35 23 6.1 3.6

10°k, 9.6 1.08 1.15 1.22 1.45
v=0.1

L 10.3 24 35 81 111

Ty 10.4 43 29 9.5 5.0

10k, 9.6 1.16 1.23 1.33 1.59
y=1.0

r 8.4 12 19 42 85

T 25.6 59 36 11.2 5.5

10%k, 8.7 1.43 1.52 1.60 1.71
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FIG. 4. Normalized equilibrium distribution of micellar
length C(L) for samples S1, S3, and S5. All samples are
characterized further in Table 1.

Concentration effects
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FIG. 5. Average micellar length L (reduced) vs the volume
fraction ¢, to be compared with the mesoscopic result [Eq. (2)].
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FIG. 6. Normalized distribution of micellar length C(L) at
four different shear rates for sample S'1.



53 WORMLIKE MICELLES UNDER SHEAR FLOW: A ...

7
Average length - EMD
6 4 of micelles Rc=1.13
5| OO g
1 O
OOy e, = %
c . . LON S o q(; 100 %
L S— R
9. ®.. RO 15%
3 e
g 4%
2 T T T T T T
-5 -4 -3 -2 -1 0 1 2

log, Y

FIG. 7. Average micellar length L vs the shear rate for the
samples S2, .53, and S5 (see Table I).

polymer samples and an important dependence of L on
the scission energy, is quite comparable with predictions
of Cates [see Egs. (1) and (2)]. In particular, these results
support the relevance of the microscopic FENE-C model.
The concentration dependence of L, reported in Fig. 5
from three samples (compare with Table I), is found to
scale with the volume fraction ¢ with an exponent
around 0.5-0.8, as predicted by diverse mean field mod-
els [1,36-38]. Notice that there is an indication of a
concentration-induced size growth, which is not de-
scribed by a single power law. At high concentrations
the few data points in Fig. 4 seem to be described better
by a power law value of 0.7-0.8. Recently, experimental
results of Schurtenberger et al. [39] indicated an even
stronger concentration dependence (=1) for aqueous
solutions of the nonionic surfactant hexa-ethylene glycol
mono-n-hexadecyl ether (C,(E¢), which forms giant poly-
merlike micelles in water. Macroscopic quantities, such
as the viscosities, the birefringence, or all types of struc-
ture factors, can be extracted from the microscopic mod-
el without introducing further assumptions, as is neces-
sary in order to simplify the calculation within the mesos-
copic approach.

B. Flow effects

The length distributions C (L) for a sample under shear
are reported in Fig. 6. The plots of C(L) at different
shear creates appear to be qualitatively of the same form
as in equilibrium and seem to be unaffected by the flow,
except for small lengths. At high shear rates the shortest
chains are not as favored as under equilibrium condi-
tions. The small micellar chains, expected to be dynami-
cally aligned to a certain degree under flow, apparently
are more stable than single M monomers. Such an effect
could be related to the decrease of diffusivity of M mono-
mers, bonded in micellar chains, compared to its free
counterparts.

The simulations show a decrease of the mean length of
the particles L with increasing shear rates (Fig. 7) evolv-
ing in the onset of flow, when the number of breaks
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FIG. 8. Average breaking time (equal to the recombination
time in the stationary regime) vs shear rate for the same samples
as in Fig. 7.

exceeds the number of recombinations. Because it is
difficult to measure directly the micellar mean length ex-
perimentally, that effect has not yet been verified. An op-
posite behavior, the so-called shear induced structure,
has been reported by Hoffmann, Rauscher, and
Hoffmann [18], where rodlike micelles are found to in-
crease in size under low shears. In our simulations we
study long chains and the decrease of L occurs at rela-
tively high shear rates. Within the microscopic model
this effect should be understood as a consequence of
shear-induced stretching of bonds, which in stationary
flow is accompanied by an equivalent increase of recom-
bination processes.

As a consequence of the decrease in size, the breaking
time shows a tendency to increase slightly at high shear
rates. This can be seen from Fig. 8, where this quantity is
plotted as a function of the shear rate for different sam-
ples. We have summarized finally in Table I the relevant
stationary properties for all the samples studied at
different shear rates.

V. CONCLUSION

It has been shown that the results of the simulations on
the equilibrium properties C(L) and L support the
relevance of the microscopic FENE-C model in predict-
ing behavior similar to real micellar systems. Its equilib-
rium properties are comparable with those predicted by
the mean field model. The microscopic model presented
is adopted to study in detail the underlying molecular
mechanisms in equilibrium and the origins of viscoelastic
behavior under nonequilibrium conditions without intro-
ducing further assumptions into the model. The FENE-
C model shows a decrease of the mean length at high
shear rates while the distribution of length is quite
unaffected by the flow.

In a subsequent study, rheological and structural quan-
tities such as shear viscosities, normal stress differences,
static structure factors, and the flow birefringence will be
extracted for the case of planar Couette flow, as outlined
in [21,22]. A study of the microscopic model under vari-
ous isochoric time-dependent flows is in progress.
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FIG. 1. Model potentials specifying the microscopic model
of wormlike micelles. All particles interact via the truncated
(repulsive) Lennard-Jones potential. The FENE-C potential
produces the bonding interactions.



